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Introduction 
 
The textile and paper industries are particularly 
problematic among the numerous industrial sectors 
because they produce large amounts of wastewater that, 
if released untreated into the environment, could have 
negative effects. Different chemicals released by industry 
end up contaminating the environment over time. Many 
chemicals, such as dyes, pigments, and aromatic 
molecular structure compounds, were widely employed 

in many industrial applications, such as textiles, printing, 
pharmaceuticals, food, toys, paper, plastic, and 
cosmetics, as a result of the fast industrialization and 
urbanization of the world (Mohana et al., 2008). The 
excessive use of dyes is the primary cause of the 
environmental issues related to textile activity (Tang et 

al., 2022). Colors influence consumer preferences as well 
as several sectors. It also enhances a product's aesthetic 
quality, which encourages customers to buy and hence 
promotes economic expansion. The dyes that were used 
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are frequently the source of the many colors and tones 
that we notice. When compared to synthetic dyes, natural 
dyes are the more secure and sustainable choice (Saxena 
& Raja, 2014). Water pollution is one of the most serious 
environmental pollutants endangering biodiversity, with 
dye-based sectors such as the textile industry being the 
primary source of effluents into water bodies (Chanwala 
et al., 2019). Surface and ground waters near dyeing 
industries are severely contaminated by the brightly 
colored wastewater from the textile industries, which 
include colors ranging from 2% for basic dyes to 50% for 
reactive dyes (O’Neill, 1999).  
 
Wastewater from the standard cotton textile sector is 
generally distinguished by high pH, color, and biological 
and chemical oxygen demand (BOD and COD). 
Untreated dye wastewaters have a high BOD and color, 
which lowers the dissolved oxygen content and light 
penetration in receiving water bodies, respectively. If 
these wastewaters weren't properly treated, they would 
devastate the natural aquatic ecosystem (Banat, 1996). 
Colors can be eliminated by using bacteria; novel 
bacterial strains that are able to decolorize a wide range 
of colors have also been discovered and studied. Even 
though a lot of research has been done on how bacteria 
decolorize dye, more work needs to be done to isolate 
novel bacteria that can break down a variety of 
structurally distinct colors. It's also crucial to research 
their physiological traits and the underlying processes of 
dye biodegradation at particular pH and temperature 
ranges (Wang et al., 2009).  
 
On the other hand, a large range of microorganisms, 
including yeast, fungi, bacteria, and algae, can degrade 
azo dyes (McEldowney et al., 1993). Dyes can be 
collapsed by them and transformed into CO2 and H2O 
(Lade, 2012). Thus, it is now becoming clear that the 
mineralization and purification of azo dyes through 
biodegradation is a useful strategy (Willet, 2019). In the 
current situation, microbial or enzymatic therapy 
provides an essential, economical, and environmentally 
friendly way to restore ecosystems contaminated by azo 
dyes. It may also assist to cut down on the massive 
amount of water required in comparison to 
physicochemical techniques. Current studies are 
concentrated on treating this source of pollution 
effectively through the use of various biotechnological 
techniques (Rai, 2005). Numerous microorganisms, such 
as bacteria, fungi, yeasts, actinomycetes, and algae, may 
break down azo dyes. Of these, bacterial cells are a cheap 
and effective method for eliminating different azo dyes 

from textile dye effluents. It has been documented that 
certain bacteria, either in pure cultures or in consortiums, 
are capable of decolorizing dyes (Dafale, 2008). 
 
Dye removal from wastewater effluent has been 
accomplished using a variety of physicochemical 
techniques. The use of physical/chemical methods, 
however, has several inherent disadvantages, including 
the fact that they are not economically feasible due to the 
increased energy and chemical requirements, that they 
cannot completely remove the azo dyes and/or their 
organic metabolites, that they produce a large amount of 
sludge that could lead to secondary pollution issues, and 
that they involve complex procedures (Forgacs et al., 
2004; Zhang et al., 2004). 
 
In contrast to physicochemical treatment approaches, 
microbial or enzymatic decolorization and degradation is 
an ecologically friendly and economically competitive 
substitute for chemical decomposition processes that may 
assist minimize water use (Rai et al., 2005; Verma and 
Madamwar, 2003). This paper examines different 
approaches to treating textile effluent that contains azo 
dyes and highlights the significance of biological 
approaches, primarily bacterial in nature. Furthermore, 
we concentrate on the impact of the physical and 
chemical surroundings, the enzymatic processes involved 
in bacterial decolorization, and the toxicity of the 
breakdown by products. 
 

History of Dyes 
 
Since prehistoric times, color has been used as a means 
of expression, a form of visual communication, and a 
symbolic art of society. It has also been linked to the 
cultural evolution of humans, as the use of color in 
various prehistoric environments has been linked to 
individual development on the artistic and cognitive 
levels (Mohadi et al., 2017). The prehistoric record 
shows that the usage of various colors increased over 
time, albeit in varied ways depending on the period and 
location.  
 
The Middle Stone Age/Middle Paleolithic in Africa and 
Europe is when pigments were first used (150,000–
30,000 BC) (Hovers et al., 2003). Though the latest 
known paintings were created in the fifteenth century in 
various caves and caverns on the island of Mona, the 
usage of these colors in cave art dates back further 
(Samson et al., 2017). Because of the advent of 
agriculture, prehistoric man's lifestyle shifted from 
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nomadic to sedentary, resulting in the late Neolithic 
period (6000–3500 BC) and the Bronze Age (3000–1200 
BC) marking the beginning of human civilization 
(Chekalin et al., 2019). Pigments also emphasized the 
relief of cuneiform tablets, which were created during the 
emergence of Mesopotamian civilization (3000–2000 
BC). However, the pigment created varied in 
composition according to its intended use. For instance, 
the red pigment used for black and red decorations in the 
Mayan civilization (2000 BC–900 AD) contained 
cerium, whereas the pigment used to adorn pots with red 
line designs was enhanced with iron and chrome (Pugh et 

al., 2012). It was challenging to obtain colors in primitive 
times other than ochre and black. As an illustration, the 
color blue, which is regarded highly and costs as much as 
gold, was formerly exclusively found in lapis lazuli 
reserves in Afghanistan [68], which caused other 
civilizations to devise methods for producing the colors. 
The color blue was connected by the ancient Egyptians 
with the sky and water. They were the first to create 
Egyptian blue, an artificial blue dye that was created 
between 2900 and 2750 BC of the fourth dynasty (2630 
BC under Sneferu the pharaoh and 2500 BC under 
Shepseskaf the pharaoh) (Berke, 2002 and Abel, 2012).  
 
The color purple had an impact on many civilizations as 
well, and it was so unique that only powerful or wealthy 
individuals could afford to wear clothing dyed in that 
hue. The Phoenicians were notable for their skill in 
processing and commercializing the purple color known 
as "Tyrian," which they derived from either Murex 

trunculus or Murex brandaris snails. It is thought that 
this color first appeared towards the end of the Bronze 
Age (1550–1200 BC) (Jensen, 1963). In order to produce 
diverse colors from minerals, vegetables, or insects, it 
was a constant endeavor for the various civilizations to 
obtain pigments or dyes. The use of color during the 
Medieval Ages (the fifth to the fifteenth century) was 
vivid, distinct, and well-defined.  
 
In contrast to improvements in the dying technique and 
the movement of colorants around Europe during that 
era, there was little invention of new dyes during that 
time (Barnett et al., 2006). Cornelius Drebbel combined 
tin with cochineal red, which is derived from insects, in 
1630 to increase the stability of natural dyes and create 
the first dye that was mistakenly labeled as manmade 
(Cornelius, 1630). Carl Scheele created the Emerald 
Green, also known as Scheele Green, pigment in 1788. 
Because it was made of copper aceto-arsenite, it was 
extremely hazardous and wasn't used again until 1960. 

Because it was made of copper aceto-arsenite, Carl 
Scheele created the highly deadly Emerald Green, or 
Scheele Green, pigment in 1788. It wasn't used again 
until 1960 (Barnett et al., 2006). In 1854, Henry Perkin 
created and patented Mauveine, the first synthetic color 
made from coal tar. Perkin's resolution of the production 
issue signaled the start of new processes for creating 
artificial colors (Abel, 2012 and Johnston, 2008). The 
production of new colors was made possible by the use 
of components derived from coal tar; by 1869, 
inexpensive synthetic dyes had taken the place of some 
natural dyes, like alizarin. Subsequently, the synthesis of 
dyes has expanded, with over 100,000 synthetic ones 
reported (Abel, 2012 and Paz et al., 2017). The 
production of dyes was centered in Europe at the start of 
the 20th century. China and India are currently the 
world's two biggest manufacturers and suppliers of 
textiles (Tkaczyk et al., 2020).  
 

Classification of Dyes  
 
Textile dyes have been classified according to their 
chemical structural (Azo dyes, Nitro dyes, Indigo dyes, 
Anthraquinone dyes, Phthalein dyes, Triphenyl methyl 
dyes, Nitrated dyes, etc.) or their industrial application. 
 

Azo dyes 
 
Scientists who have been verified as credible estimate 
that around one million tons of azo dyes are produced 
worldwide each year. It comes in a variety of shapes and 
sizes, and there are currently over 2,000 azo dyes in use 
that differ fundamentally from one another (Fatima et al., 
2017). A single azo linkage exists in monoazo dyes, 
although azo bond linkages (–N = N–) can occur more 
than once. Whereas triazodyes have three connections 
and diazo dyes have two, respectively. 
 
Azole dyes make up about 70% of all dyes used in 
industry. The textile, cosmetic, leather, pharmaceutical, 
paper, paint, and food industries all make extensive use 
of them. The textile, food, paper, printing, leather, and 
cosmetic sectors are the main businesses that employ azo 
dyes, which account for over half of all synthetic dyes.  
 
Although azo dyes have a variety of structures, the 
presence of azo linkage, or N=N, is the most significant 
structural characteristic. Since this bond can occur more 
than once, monoazo dyes contain one azo linkage, diazo 
dyes have two, and triazo dyes have three (Chang & Lin, 
2001).  
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Reactive dyes 
 
Although they are more effective at achieving a high wet 
strength than the less costly direct dyes, their 
employment is not always feasible due to the challenges 
associated with achieving adequate unison. Because 
reactive dyes are the only textile colorants intended to 
form a covalent bond with the substrate during the 
manufacturing process, they have a slightly lower 
chlorine-fastness and excellent light-fastness under 
extreme conditions than vat dyes. Reactive dyes also 
provide a wide range of shades with good light-fastness 
and excellent wash-fastness on cotton. These 
characteristics put this category of dyes at the premium 
end of the market (Farouk & Gaffer, 2013). The first 
commercial reactive dyes for cotton were based on the 
dichloro-s-triazine reactive group. These dyes are the 
second largest classes of dyes because of their wide 
spectrum of colors, great wet fastness, and brilliance, 
reactive dyes have grown increasingly popular (Zhang et 

al., 2005). 
 
Vat dyes 
 
The vat dyes are designed to be applied to cellulosic 
fibers, particularly cotton, which exhibits exceptional 
fastness to various agents such as washing, bleach, light, 
and so on. This is primarily because the dyes are 
insoluble in water (Burkinshaw et al., 2013). Vat dyes 
are rarely, if ever, used on other kinds of fiber, where 
alternative dye classes are preferred. In fact, when it 
comes to synthetic fibers, vat dyes are rarely used 
because of their generally low substantivity and the 
generally pale depths of hues that result from their 
limited diffusional behaviour within the fibers. They are 
mainly soluble in hot water and some are soluble in the 
presence of little Na2CO3.The most significant natural vat 
dye is called indigo, or indigotin, which is present in 
different species of the indigo plant Indigofera as its 
glucoside, indican. When extremely high light- and wet-
fastness qualities are needed, vat dyes are employed 
(BenkhayaM'rabet & El Harfi, 2020). 
 
Sulphur dyes 
 
The first sulphur dye has been prepared in 1873 by 
Croissant and Bretonnière (Holme, 2006). The most 
important natural vat dye is known as indigo, or 
indigotin, and it can be found in several species of the 
Indigofera plant as the glucoside indican. Vat dyes are 
used when very high light- and wet-fastness requirements 

are met (Nguyen & Juang, 2013). Sulphur dyes 
accounted for 9.1% of all US dye output in 1966 and 
15.8% of dyes used on cellulosic fibers (Mohadi et al., 
2017). Global production was estimated to be between 
110,000 and 120,000 tons annually. Vat dyes include the 
sulfur dyes (Benkhaya, M'rabet & El Harfi, 2020). 
 
Direct dyes 
 
A variety of factors, including chromophore, fastness 
qualities, and application features, are used to categorize 
direct dyes. These are the main chromophoric types: 
formazan, anthraquinone, quinolone, thiazole, and other 
minor chemical classes including azo, stilbene, 
phthalocyanine, and dioxazin (Burkinshaw, 1995). Based 
on a variety of factors, including chromophore, fastness 
qualities, and application features. The chromophoric 
category of direct dyes consists of oxazine, 
phthalocyanine, stibene, and azo, as well as some 
thiazole and copper complex azo dyes (Pillai et al., 
2011). The moderate wash-fastness of these dyes, despite 
their wide shade gamut and ease of application, has 
caused them to be somewhat replaced by reactive dyes, 
which have substantially higher wet and washing fastness 
qualities on cellulose substrates. 
 

Characteristics of Textile Dye Effluent 
 
The textile plant's general effluent is often averaged to 
reflect the textile wastewater characteristics reported in 
literature. Although Yaseen and Scholz (2019) focused 
on the fragmented data pertaining to simulated textile 
wastewater, they did provide a critical analysis of the 
literature that is currently accessible regarding typical 
and genuine characteristics of the textile effluents. It is 
noteworthy to mention that numerous experimental 
studies on simulated textile wastewater, if not in single 
dye or model dye mixtures, have been conducted in the 
literature on dye removal. The treatment of simulated 
wastewater differs significantly from that of real 
industrial wastewater, as demonstrated by Bilinska et al., 
in (Wrebiak et al., 2014). 
 
A variety of metals, dyes, and other contaminants can be 
found in the wastewater released by the dye industry. 
Industrial wastes can be classified as either liquid or 
solid, depending on the type of waste generated during 
the manufacturing process. These wastes comprise any 
substance that can be decreased during the product 
manufacturing process. Because liquid waste (also 
known as wastewater released by industry) contains 
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many hazardous elements, it poses a threat to both the 
environment and living things currently in existence. 
However, the kind of production method and goods used 
determine the nature and features of industrial effluent 
(Saxena and Bharagava, 2017). 
 
Metals and their complexes, which are either dissolved or 
present in various forms in actual water effluents, are 
recognized as one of the main contaminants in 
wastewater treatment. The most hazardous metals 
discovered in wastewater from textile industry 
manufacturing processes include cadmium, lead, zinc, 
and chromium, among others (Hussein, 2013).  
 
Wet process effluent from the dye industry is 
characterized by significant differences in a number of 
characteristics, including pH, total solids (TS), biological 
oxygen demand, chemical oxygen demand (COD), water 
use, and color. Wastewater with a BOD/COD ratio of 
0.25 indicates that it is industrial wastewater with a high 
concentration of organic matter that is not biodegradable. 
 
A survey was conducted to assess the biodegradability of 
industrial textile wastewater from various dyehouse 
operations, including specific conductivity, pH, COD, 
BOD, TC, TOC, total phosphorus, total nitrogen, and 
chloride content (Bili ´nska, Gmurek and Ledakowicz, 
2016). Biodegradability was determined based on 
BOD5/COD, N/P, BOD5/N/P, and toxicity towards 
activated sludge microorganisms. 
 
Based on this, it was determined that dye effluent streams 
needed to be divided based on how biodegradable they 
were. This is in line with the recommendations of the 
revised BREF document (December 2019) (European 
Commission, 2019) and the July 2003 (The European 
Commission, 2003) European Commission Integrated 
Pollution Prevention and Control (IPPC) Reference 
Document on Best Available Techniques for the Textiles 
Industry (The European Commission, 2003)—
decentralized treatment on site of specific, segregated 
single wastewater streams. 
 

Methods Used in Textile Dyes Removal 
 
These days, protecting aquatic life in water bodies 
through the development of cost-effective treatment 
solutions for wastewater discharge from textile 
businesses is the main priority. Thus, the techniques 
could be biochemical, physio-chemical, or any 
combination of the two, which will provide efficient 

strategies for eliminating impurities from wastewater 
originating from the textile industries. 
 

Physicochemical Methods 
 
A combination of chemical and physical methods is 
known as physico-chemical degradation. A physico-
chemical treatment is a procedure in which chemical 
changes may or may not occur at different stages of the 
process, but physical changes remain constant 
(Karimifard and Alavi Moghaddam, 2018). 
 
Despite the fact that physico-chemical wastewater 
treatment techniques are simple to apply, they might not 
necessarily be economical or environmentally beneficial 
(De Gisi et al., 2016). Due to the production of numerous 
byproducts and sludge that cannot be recycled, a high 
electricity consumption with a low output is necessary 
(Khandare and Govindwar, 2015; Demirbas, 2009). 
These techniques involve a multistage treatment 
approach with a lengthy retention period rather than a 
single phase. Physical approaches that rely on the 
coagulation-flocculation of colors work well for 
removing mostly sulfur and dispersed dyes, but they have 
very minor effect on acid, direct, reactive, and vat dyes. 
Furthermore, the implementation of these procedures is 
limited by the high amount of sludge produced and low 
color removal efficacy (Vandevivere et al., 1998). 
Several physical approaches, including ion-exchange, 
oxidation, radiation, filtration, and adsorption, are 
frequently employed in wastewater treatment and have 
yielded beneficial results (Aplin and Waite, 2000). The 
increased efficacy of adsorption techniques in 
eliminating a broad spectrum of dyes has attracted 
significant attention. High affinity, capacity for target 
chemicals, and the potential for adsorbent regeneration 
are among the qualities that go into choosing an 
adsorbent (Subramaniam et al., 2009). Because of its 
expensive cost, activated carbon (AC) is not frequently 
employed even though it is a very good adsorbent for 
many kinds of dyes (Robinson et al., 2001). Some 
researchers use inexpensive adsorbent materials for the 
color removal of dye wastewater, such as peat, bentonite 
clay, fly ash, polymeric resins, ion exchangers, and many 
biological materials like corn/maize cobs, maize stalks, 
and wheat straw, in order to make the process more 
economically viable (Vandevivere et al., 1998). 
However, difficulties with their regeneration or disposal, 
significant sludge production, poor efficacy with a wide 
range of dyes, and high cost have restricted the practical 
utilization of these adsorbents (Anjanayelu et al., 2005; 
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Karcher et al., 2001). Researchers shed light on the 
adsorption method's limitations in handling undissolved 
dye compounds and the need for a different desorption 
technique. The irradiation process demands a high 
concentration of dissolved oxygen, yet it has the ability 
to treat modest volumes of colored water. On the other 
hand, when various additives are present in the same 
wastewater, the ion exchange systems respond 
inadequately and show more deteriorating results when 
treating different dyes (Bousher et al., 1997; Abu-Saiyed 
et al., 2013). Reverse osmosis, nanofiltration, and ultra 
filtration are a few examples of filtration techniques that 
have been applied to chemical recovery and water reuse. 
Membranes are a useful tool in the textile industry for 
separating hydrolyzed colors and dyeing auxiliaries that 
simultaneously lower wastewater's color, BOD, and 
COD levels. They are also excellent for bleaching and 
mercerizing wastewater. Under this method, the kind and 
porosity of the filter are chosen based on the chemical 
makeup of the wastewater and the particular temperature 
needed for the operation (Dos Santos et al., 2007). 
Membranes, however, have a number of serious 
disadvantages, such as high investment costs, the 
possibility of membrane fouling, and the creation of 
secondary waste streams that require additional treatment 
(Dos Santos et al., 2007; Robinson et al., 2001). 
 
A variety of chemical treatment techniques are used to 
eliminate both organic and inorganic contaminants found 
in wastewater. Chemical oxidation techniques allow dye 
molecules to be destroyed or broken down. These 
techniques involve a variety of oxidizing chemicals, 
including hydrogen peroxide (H2O2) and ozone (O3), and 
manganese oxide (MnO4). These oxidizing agents cause 
alterations in the chemical composition of a substance or 
a combination of compounds, making the dye molecules 
more prone to degradation (Metcalf et al., 2003). 
Nevertheless the actual implementation of this 
technology is limited by its short life, ineffectiveness 
against dispersed dyes and those insoluble in water, low 
capacity to remove COD, and high cost of ozone 
(Anjaneyulu et al., 2005). 
 

Biological Methods 
 
Pollutants can be broken down biologically, which is 
environmentally benign and results in full mineralization 
of organic compounds with little sludge production. 
According to several studies this approach is the most 
successful (Varjani et al., 2015; Bhatia et al., 2017; 
Varjani et al., 2019; Kumar et al., 2020). Anaerobic or 

aerobic environments can be used for biological 
deterioration. To decolorize and break down dyes, a 
variety of microorganisms including bacteria, fungus, 
yeast, and algae were employed (Ajaz et al., 2020; Ali et 

al., 2010). An important field of study in the 
environmental sciences is bioremediation, or the 
employment of microbial methods to treat pollutants. 
These methods allow bacteria to spontaneously adapt to 
the hazardous wastes, giving rise to new, resistant strains 
that subsequently change different toxic compounds into 
less dangerous versions. The activity of the 
biotransformation enzymes is the basis for the 
biodegradation of resistant substances in the microbial 
system (Saratale et al., 2007). Studies have shown the 
significance of enzymes including azoreductase, laccase, 
peroxidise, and exo-enzymes in the breakdown of dyes. 
The biological technique aids in the elimination of color 
by breaking down synthetic dyes into a relatively less 
hazardous inorganic substance by the breakdown of 
bonds (i.e., chromophoric groups) (Babu et al., 2015). 
Several biotechnological approaches have drawn 
attention as viable environmentally acceptable ways to 
reduce the pollution caused by azo dyes. These strategies 
mostly include the utilization of bacteria and frequently 
involve physicochemical processes as well. The azo dyes 
are broken down into amines in two stages: first, the 
colors undergo azo bond breaking, and then, in an 
aerobic environment, the aromatic amines are further 
catabolized into small, non-toxic molecules (Chequer et 

al., 2011). 
 
In order to fully degrade the azo linkages created inside 
the dyes, methods are being developed to take advantage 
of bacteria's capacity to live in both aerobic and 
anaerobic environments. The two-phase approach, in 
which anaerobic processes precede aerobic processes in 
the first phase, has been shown to be successful and 
beneficial in the development of biological technologies 
for decolorization in the future (Muda et al., 2013).  
 
Azo dyes are xenobiotics by nature and resistant to 
biodegradation; hence, the following benefits can be 
obtained by treating textile effluent with microbes or 
enzymes to completely decolorize and degrade these 
colors: The advantages of this process over 
physicochemical approaches include: (1) being less 
water-intensive; (2) producing less sludge; (3) being 
cost-competitive; (4) yielding end products that are non-
toxic or have complete mineralization; and (5) being 
environmentally benign (Banat et al.,1996; Rai et al., 
2005). 
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Table.1 Azo dye (Sharma et al., 2021) 
 

Dye C.I No. Class  Chemical Structure 

C.I. Acid Red C.I.16185 Azo 

 

 
Table.2 Reactive dye (Khatri et al., 2014a, b) 

 
Dye C.I No. Class  Chemical Structure 

C.I. Reactive Red 3   C.I.18159   Azo 

 
 

C.I. Reactive Blue 
19  

C.I. 61200  Anthraquinones 
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Table.3 Vat dye (Hihara et al., 2002; Sirianuntapiboon et al., 2006; Sanchez, 2015). 
 

Dye C.I No. Class Chemical Structure 
C.I. Vat Blue 1  C.I.73001  Indigo class 

 
C.I. Vat Black 25   C.I.69525 Anthraquinones 

 
C.I. Vat Green 1  C.I.59825  Violanthrone 

 
 

Table.4 Sulfur dye (Zinatloo-Ajabshir and Salavati-Niasari, 2016). 
 

Dye C.I. No. Chemical Structure 
C.I. Sulfur Blue 15  

 
 
 
 
 
 

C.I.53540 

 

C.I. LeucoSulfur Black1  C.I.53185 

 
C.I. Sulfur Green 3   C.I.53570 
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Table.5 Direct dyes (Lorimer et al., 2021) 
 

Dye  C.I No. Class Chemical Structure 
C.I. Direct Blue 1  C.I.24410 Azo 

 
C.I. Direct Blue 86  C.I.74180 Phthalocyanine 

 
C.I. Direct Blue 106 C.I.51300  Triphenodioxazine 

 
 

Table.6 Current development in processes used in dye removal 
 

Processes Current Development References 

Adsorption Synthesizing of new, efficient, nature-based, or waste-
originating adsorbents, kinetic, equilibrium and 

thermodynamic studies on biosorption. 

(Zhang et al., 2021; 
Bonetto et al., 2021; Zhou 

et al., 2021; 
Maruthanayagam et al., 

2020; Radwan et al., 

2020) 
Coagulation/Flocculation Creation of novel, effective, naturally occurring, or 

waste-producing coagulants and use of magnetic fields 
to speed up sedimentation 

(Kristianto et al., 2020; 
Mateus et al., 2020; Reck 
et al., 2020; Padhiyar et 

al., 2020; Puteri et al., 

2020; Garvasis et al., 

2020) 
Electro-coagulation Ultrasound aid, nanofilms on cathodes, and solar power (Ozyonar et al., 2020; 
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utilization. Akhtar et al., 2020; Fan et 

al., 2020; Phalakornkule et 

al., 2020; Rodrigues et al., 

2020; Criado et al., 2020) 
Electrochemical Oxidation Novel materials and electrode coatings, membrane 

anodes, air-diffusion cathodes, and the electro-peroxone 
process 

(dos Santos et al., 2020; 
Yang et al., 2020; Lu et 

al., 2020; Ghalebizade et 

al., 2020; Di et al., 2020; 
Qaseem et al., 2020) 

Membrane Filtration Novel membrane materials stabilized by 
biomacromolecules and enhanced by the inclusion of 

grapheme 

(Nawaz et al., 2021; 
Zhang et al., 2021; Meng 
et al., 2021; Vatanpour et 

al., 2021; Zeng et al., 

2021; Mehrjo et al., 2021) 
Ozonation Addition of the catalyst, improvement through 

ultrasonography, and hydrodynamic cavitation 
(Khataee et al., 2020; 

Choksi et al., 2020; (Wang 
et al., 2020; Muniyasamy 

et al., 2020; Bilinska et al., 

2020) 
O3/ UV Membranes with photocatalytic activity (Wang et al., 2020) 

O3 /H2O2 Proposal for degradation mechanism enhancement using 
electrolysis and heterogeneous catalyst addition. 

(Sun et al., 2019; Sadhegi 
et al., 2020; Abdi et al. 

2020)  
UV/H2O2 Changes in cytotoxicity, mutagenicity, and phytotoxicity 

were measured, and a degradation process was 
proposed. Different UV sources were compared. 

(Muneer et al., 2020; 
Emadi et al., 2020; Ding et 

al., 2020; Murcia et al., 

2020; Aristizábal et al., 

2020; Laftani et al., 2019) 
Photocatalytic oxidation Green catalyst production using nanoparticles or 

difunctional catalysts that are efficient under visible 
light.  

(Fattahimoghaddam et al., 

2021; He et al., 2021; Hui 
et al., 2021; Rambabu et 

al., 2021; Zhang et al., 

2020; Shi et al., 2021) 
Fenton Fenton-like heterogenous catalysts such as zero-valent 

iron catalysts, green or one-spot catalyst synthesis, fixed 
bed reactor application, and use of sulphate radical 
anions that allow dye degradation over a broad pH 

range. 

( Morshed et al., 2020; 
Qian et al., 2020; Punathil 
et al., 2020; Kumar et al., 

2020; Nwanji et al., 2020) 

Photo-Fenton Fenton-like heterogeneous catalysts that allow dye 
degradation in the presence of light, catalysts derived 
from waste, and a degradation mechanism suggestion 

 

(Wu et al., 2021; Mushtaq 
et al., 2020; Tan et al., 

2020; Silva, E.D.N. et al., 

2020; Chen, J et al., 2020; 
Ain, Q.U., et al., 2020) 

Electro-Fenton Analysis of dynamics and expenses, creation of 
nanocomposite electrodes, air-diffusion cathode, 

mechanism and degradation paths suggested, innovative 
orbiting electrode reactor, and recirculating flow-

through reactor 

(Suhan, M.B.K. et al., 

2020; Setayesh, S.R. et al., 

2020; Marquez et al., 

2020; Zahrani and Ayati, 
2020; Ergan and Gengec, 
2020; Jiao,Y et al., 2020) 

Bacterial Treatment Isolation of novel strains or consortiums from activated (Ayed et al., 2020; Guo et 
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sludge, oxide ditch, palm oil mill effluent, or desert soil; 
application of alkali-, halo-, and thermophilic strains; 

consortium with algae; immobilization of bacteria; 
addition of co-substrates; mechanism and pathway 
suggestions; genome and transcriptome analysis. 

al., 2020; Dhaouefi et al., 

2019; Louati et al., 2020; 
Pandey et al., 2020; Reddy 

et al., 2020; Shi et al., 

2021; Chen et al., 2020; 
Franca et al., 2020; 

Thanavel et al., 2019; 
Montañez-Barragán et al., 

2020) 
Fungal Treatment Implementation of microbial consortiums, such as yeast 

consortiums capable of lignin valorization, dye 
treatment, and biodiesel generation, as well as fungus 
immobilization and strain isolation from plant roots or 

effluent sites. 
 

( Agrawal et al., 2020; Ali 
et al., 2021; Zhao et al., 

2020; Gao et al., 2020; 
Laraib et al., 2020; 
Habeeb et al., 2020; 

Noman et al., 2020; Al-
Tohamy et al., 2020; 

Chatterjee et al., 2020; 
Šlosarˇcíková et al., 2020; 

Khan et al., 2020) 
Enzyme Treatment Enzyme synthesis, immobilization, metabolite 

optimization, and toxicity evaluation optimization. 
 

(Sosa-Martínez et al., 

2020; Vineh et al., 2020; 
Xu et al., 2020; Navas et 

al., 2020; Yin et al., 2019; 
Uber et al., 2020) 

Algal Treatment Immobilization, genetic manipulation of algae and 
cyanobacteria, co-contaminant impact on dye 

biodegradation, addition of graphene oxide, and lipid 
synthesis. 

 

(Abou-El-Souod, G.; 
Hamouda, R.A.; El-

Sheekh, M, 2020; Han, S. 
Et al., 2020; Mahajan, P. 

and Kaushal, J., 2020; 
Oyebamiji et al., 2019; 
Behl, K. Et al., 2020) 

Activated and Anaerobic 
Sludge 

Anaerobic core with an aerobic shell granule formation, 
metagenomic analysis in anaerobic MBR, resuscitation-
promoting factor addition, anaerobic and aerobic reactor 

integration, halotolerant yeast addition, and magnetic 
field 

 

(Zhu et al., 2020; Berkessa 
et al., 2020; Cai et al., 

2021; Gadow, S.I. and Li, 
Y.Y, 2020; Tang et al., 

2020; Zhuang et al., 2020; 
Nguyen et al., 2020; . 

Shoukat, R.; Khan, S.J. 
and Jamal, Y., 2019; 
Carvalho et al., 2020) 

Biofilms New biocarrier applications, co-substrate addition, 
kinetic analysis, process optimization, biomass 

acclimatization, and anoxic/aerobic sequencing batch 
moving bed bioreactor optimization 

(Hameed, B.B. and Ismail, 
Z.Z., 2020; Hameed, B.B. 

and Ismail, Z.Z., 2020; 
Cui et al., 2020; Ong, C.; 
Lee, K.; Chang, Y., 2020; 

Castro et al., 2020) 
 

Factors Affecting Bacterial Degradation 
 
In addition to being practically and financially feasible, 

microbe-based treatments for the degradation of 
hazardous environmental pollutants also aid in the 
management of environmental contaminants (Varjani and 
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Upasani, 2019). Wastewater from the dye industry 
contains a variety of azo dyes as well as other dye 
materials with distinct structural characteristics. 
According to reports, metals, salts, and other substances 
impede the decomposition of dyes and are harmful to 
bacterial growth (Ghosh et al., 2020). Factors like 
temperature, pH, dissolved oxygen, nutrients, dissolved 
organic matter, metals and organic pollutants influence 
water quality.  
 

Environmental Factors Affecting Degration 
 

Temperature 
 
The temperature of the water has an impact on processes 
that occur there, like mineralization, diffusion, and 
chemical reactions that raise the pH of the water (Delpla 
et al., 2009). The ideal temperature for bacterial culture 
is typically believed to be between 30 and 40 degrees 
Celsius for the majority of bacteria. This will result in a 
faster rate of dye breakdown. Reactive green 19 was 
broken down by a bacterial consortium consisting of 
Bacillus pumilus HKG212 and Zobellellataiwanensis AT 
1-3, Das and Mishra (2017) found that the maximum 
degradation occurred at 32.04oC. Nevertheless, there 
aren't many thermophilic microorganisms known to 
degrade azo dye at high temperatures (Das and Mishra, 
2017). The decolorization rate of azo dyes was shown to 
increase until it reaches the ideal temperature, at which 
point the decolorization activity marginally decreases. 
Denaturation of an azo reductase enzyme or the loss of 
cell viability are the two possible causes of this decrease 
at higher temperatures (Chang, 2017). 
 

pH 
 
pH is essential for bacterial growth and is also required 
for the treatment of wastewater (Varjani and Upasani, 
2019). The rate of color removal is higher at the optimum 
pH, and tends to decrease rapidly at strongly acid or 
strongly alkaline pH. The type of dyes and salts 
employed can determine whether the pH is neutral, 
acidic, or alkaline. The pH of the effluent containing dye 
can alter the rate of dye breakdown.  
 
The issue can be resolved by either (a) choosing a 
microbial species that can flourish at the pH of the 
effluent or (b) changing the effluent's pH to encourage 
the growth of bacteria that break down dyes (Al-Amrani 
et al., 2014). 
 

Changes in pH that fall between 7.0 and 9.5 usually have 
minimal impact on the dye degradation process. 
 
Chang et al., (2001b), on the other hand, discovered that 
the dye reduction rate became insensitive to pH in the 
range of 7.0–9.5, but it rose almost 2.5 times as the pH 
was elevated from 5.0 to 7.0 (Chang et al., 2041) 
 

Oxygen and Agitation 
 
Dye degradation and decolorization are directly impacted 
by environmental factors. There is literature out there 
that claims agitation and oxygen have an impact on 
microbial metabolism (Varjani and Upasani, 2017). 
Microorganisms require varied environments, including 
aerobic, anaerobic, and semi-anaerobic. Shaking 
contributes to oxygen supply and aeration. Shaking can 
help with oxygenation. Reductive enzyme activity is 
thought to be able to increase in anaerobic conditions.  
 
Additionally, it was noted that azo dye decolorization 
performed under strictly anaerobic circumstances was far 
better, albeit it also took place in semi-anaerobic 
environments (Knapp and Newby, 1807). Although it is 
thought that reductive enzyme activity are higher in 
anaerobic environments, oxidative enzymes that break 
down azo dyes also need a tiny quantity of oxygen.  
 
Nutrients 
 

Soluble Salts 
 
Although significant concentrations of salt are used in the 
dying process, wastewater from the dye business has a 
high electric conductivity, which can be measured using 
a conductivity meter. In order to enhance the ionic 
strength and facilitate the growth of color fixation on 
textiles, dye baths typically contain salts such as 
Na2SO4, NaCl, and NaNO3.Salts are discharged into 
industrial effluent together with dye contaminants. High 
salt content dyes may slow down the process of 
biodegradation by limiting biological mobility (Basutkar 
and Shivannavar, 2019). 
 

Carbon and Nitrogen 
 
Microorganisms require nutrient supplements for quick 
degradation of pollutants (Varjani and Upasani, 2019). It 
has been observed that both pure cultures and mixed 
cultures can quickly and efficiently degrade dyes when 
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using organic supplies such as peptone, yeast extract, or a 
blend of carbohydrates and complex organic sources. The 
addition of glucose can improve the efficiency of dye 
breakdown.  
 
Reducing equivalents from diverse carbon sources have 
been seen to be transferred to the dye during the 
decolorization process of azo dyes by reduction of azo 
bonds. Additionally, it was shown that in anaerobic 
consortia, acidogenic bacteria transform soluble 
substrates like carbohydrates into volatile organic acids 
or alcohols like methanol and acetic acid. These 
substances then serve as rival substrates for bacteria that 
are methanogenic, sulfate-reducing, and acetogenic 
(Georgiou et al., 1975). Phosphorus has 360 been 
reported as very important factor for growth of 
microorganism. 
 

Future Prospects 
 
Further research is required to improve dye 
biodegradation outcomes. This includes determining the 
(a) relevant microorganisms, (b) experimental factor 
limitations, (c) bioremediation site, and (d) degradation 
pathways prior to deploying microorganisms in the field.  
 
As this study makes clear, a great deal of research has 
been done on the distinct chemical oxidation and 
biodegradation of dyes as well as integrated techniques 
that combine the two processes. 
 
Comparable deductions could be made concerning the 
biodegradation of colors. A thorough investigation was 
conducted into the biodegradation mechanisms, 
encompassing the metabolic pathways of intermediates. 
Additionally, research should be done on the pollutants' 
competition for chemical oxidants as well as the kinetics 
of different substrates and co-substrates in biological 
mixed cultures. 
The goal of upcoming research on dye degradation 
should be to lessen the constraints placed on microbial 
activity. 
 
An effective biodegradation method should take into 
account degradation pathways, environmental conditions, 
degradation rates, and degradation processes that 
influence contaminant removal. It would be crucial to 
make sure that neither plants nor aquatic life will be 
harmed by the deteriorated goods.  
 
To better understand bacterial degradation kinetics, 

processes and hypotheses for dye wastewater breakdown 
by bacteria should be studied (Varjani et al., 2020). 
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